Université Pierre et Marie Curie 2005–2006

LM223 maths-info groupes 1, 2, 5 et 6 LM223 maths groupes 1 et 2

Feuille 8

Exercice 1. 1. Lesquelles, parmi les matrices suivantes, sont orthogonales?

$$A = \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 1 & -\sqrt{3} \end{pmatrix}, \quad B = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & -\sqrt{3} \end{pmatrix}, \quad C = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ -1 & -\sqrt{3} \end{pmatrix}, \quad D = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ -1 & \sqrt{3} \end{pmatrix}.$$

- 2. Pour toute matrice orthogonale de 1., décrire géométriquement l'isométrie correspondante de ${\bf R}^2$.
- 3. Écrire les isométries de 2. sous leur forme complexe.

Exercice 2. Pour w = u + iv un nombre complexe, on note

$$M(w) = \begin{pmatrix} u & -v \\ v & u \end{pmatrix}$$

la matrice représentant l'application de multiplication par w.

Déterminer les vecteurs propres de la matrice M(w). Est-elle diagonalisable?

Exercice 3. 1. Montrer que les matrices suivantes sont orthogonales :

$$A = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}, \quad B = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1 \end{pmatrix},$$

$$C = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ -2 & -1 & 2 \\ -2 & 2 & -1 \end{pmatrix}, \quad D = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}.$$

2. Pour chacune des matrices de 1., décrire géométriquement l'isométrie de ${\bf R}^3$ correspondante.

Exercice 4. Soit $A \in O(3)$ une matrice orthogonale de $M_3(\mathbf{R})$ de déterminant -1. Montrer que -1 est valeur propre de A.

Exercice 5. Dans l'espace euclidien \mathbb{R}^3 muni du produit scalaire usuel, on note P le plan d'équation

$$x + y + z = 0.$$

Écrire la matrice dans la base canonique de la symétrie orthogonale par rapport à P.