Université Pierre et Marie Curie 2005–2006

LM223 maths-info groupes 1, 2, 5 et 6 LM223 maths groupes 1 et 2

Feuille 7

Exercice 1. Faire l'étude complète de la forme quadratique sur ${\bf R}^4$ définie par :

$$q(x, y, z, t) = x^{2} + 2xz + 2xt + yz + ty + z^{2} + 3zt + t^{2}.$$

Exercice 2. Montrer que toute forme quadratique définie est non-dégénérée. La réciproque est-elle vraie?

Exercice 3. On considère la forme quadratique sur \mathbb{R}^2 donnée par $q(x,y) = x^2 - y^2$.

- 1. Donner son rang et sa signature. Est-elle dégénérée? Est-elle définie?
- 2. Calculer et dessiner son cône isotrope.
- 3. Pour $a \in \mathbf{R}$, on pose $D_a = \operatorname{Vect}(\binom{1}{a})$ la droite de pente a passant par l'origine, et $D_{\infty} = \operatorname{Vect}(\binom{0}{1})$ la droite verticale passant par l'origine. Montrer que $D_a^{\perp} = D_{1/a}$, $D_0^{\perp} = D_{\infty}$ et réciproquement $D_{\infty}^{\perp} = D_0$.
- 4. Trouver une valeur de a telle que $D_a + D_a^{\perp} \neq \mathbf{R}^2$ et $D_a \cap D_a^{\perp} \neq \{0\}$.

Exercice 4. On considère $E = \mathcal{C}([-1;1], \mathbf{R})$ l'espace des fonctions continues sur [-1;1] à valeurs réelles, muni de la forme quadratique

$$q: f \mapsto \int_{-1}^{1} t f^2(t) dt$$
.

Montrer que les fonctions paires ou impaires sont des vecteurs isotropes de q.